# The inspection report for the SN-ratio optimum prediction accuracy of Taguchi two step design. Is its D grade? 

Teruo Mori<br>The 3 ${ }^{\text {rd }}$ Pacific Rim Statistical Conference for production Engineering<br>Dec 13/14 2018 at Taipei Taiwan: National Tsing Hua University

## 1. Introduction

Robust design has been widely adopted during product design to reduce variation and improve quality. It was proposed by prof Gen-ichi Taguchi [memo] as the optimizing methodology at the 1980, and it was composited two steps process. First step is to reduce variation with SN-ratio. Second step is to tune to target. Initially, this methodology was introduced to engineer just following only the procedure like How-to -approach.
It was informed that engineers were supposed to be not required the any statistic knowledge for applying it to their own subjects on design and experiment site.
Therefore, it had been almost spent 30 years without to inspect its accuracy performance grade with case studies on site. Engineers had expecting at least the predicted optimum confirming trail value(b) should be better than the best one(a) of original datasets as the optimizing to tool.
We had surveyed the prediction accuracy performance of Taguchi two step design at engineering design sites. Data bases were the case studies reports of Japanese quality engineering association of 2003-2012. We had collected originally 171 published case studies using the mainly $\mathrm{L}_{18}$ orthogonal array with SN ratio from them. We reselected 159 from original dataset of 171 cases to analysis prediction accuracy for Taguchi two step design.
$61 \%$ optimum trial values(b) could not exceed the best value(a) of SN ratio of the original dataset. So, it might be D grade.

## 2.Taguchi: two step design process ${ }^{[1]}$

Taguchi way was two step design to reduce the variation for the researching subject. Engineer will layout to cross array with the control factors to inner array and noise factors to outer array. Let $\mu$ and $\sigma^{2}$ are mean and variance of the response. So, SN ratio $\eta$ will be defined the following

SN ratio: $\eta=10 \times \log \left(\mu^{2} / \sigma^{2}\right)$.
We will apply $\mu$ and $\sigma^{2}$ for average (y) and sample variance $\mathrm{s}^{2}$.

SN ratio: $\eta=10 \times \log \left(y^{2} / s^{2}\right) d B$
Also, tune will be adapted sensitivity S
Sensitivity $S=10 \times \log \left(\mathrm{y}^{2}\right) \mathrm{dB}$
To optimize the engineer subject will be followed under two steps.

Step 1: Select the highest levels of the control factors in the $S N$ ratio main effect chart to maximize $\eta$.

Inner array, usually $\mathrm{L}_{18}\left(2^{1} 3^{7}\right)$ will be applied, and outer array noise factor will be compound error $\mathrm{N}_{1}, \mathrm{~N}_{2}$ or orthogonal array . Response were converted for $S N$ ratio $(\eta)$ and Sensitivity ( $S$ ) with dB unit.
Then level-average of SN ratio will be plotted as main effect chart. Taguchi was sure that the optimum condition with combination of the highest levels of SN ratio for each control factors at main effect chart will be shown the maximized SN ratio $\eta$.

Step 2: Select the level of the tune factor to target with sensitivity $S$ without increasing variation $\sigma^{2}$.

## 3. Problems at step 1 on Taguchi process

If it was the right/correct which Taguchi described the optimum SN ratio value(b) which were consisted with the highest-level set for the layout factors was better than the highest one (a) of the original datasets.

However, we saw so many the optimum SN ratio value (b) which were lower than the highest one(a) of the original data set.

So, we will show there are the typical two type case at Step 1. Type 1 is $\mathrm{a}<\mathrm{b}$, Type 2 is $\mathrm{a}>\mathrm{b}$. Table -1 shows the typical case two in data-base 2007 No80 and No47 of the Table 2.

So, we collected to survey the relationship (a) and (b) at the real case studies. Orthogonal arrays were applied for $\mathrm{L}_{18}$ with the full layout ABCDEFGH with SN ratio (dB) and sensitivity (dB) as basic condition.

Fig-1 shows the factor effect charts were made with level average of SN ratio. We put round-mark( $)$ the highest level for each factor. We combined the round $-\operatorname{mark}(\bigcirc)$ level as Taguchi step 1 to be the optimum condition(b). Both outputs of the optimum conditions were shown the lowest column at Table 1.

The optimum output 35.04 of Type 1 was the higher than the highest value 27.90 (No7). However, type2 optimum output 12.65 was the $6^{\text {th }}$ in descending order. There are higher ones: Nol,2,9,16,17 with bold letter. The highest of the original dataset is square mark at Fig-2.

Table 1 Two type of Taguchi problems at step 1

| Taguchi |  |  |  |  |  |  |  |  | $\begin{array}{\|c\|} \hline \text { Type } 1 \\ \hline a<b[2007-80] \\ \hline \end{array}$ |  | $\frac{\text { Type } 2}{a>b[2007-47]}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Layout $\mathrm{L}_{18}\left(2^{1} 3^{7}\right)$ |  |  |  |  |  |  |  |  |  |  |  |  |
| No | A | B | C | D | E | F | G | H | SN | S | SN | S |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 26.01 | 25.01 | 15.66 | -15.09 |
| 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 26.25 | 27.58 | 16.41 | -15.10 |
| 3 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 10.56 | 20.64 | 7.53 | -15.10 |
| 4 | 1 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 26.38 | 27.00 | -24.65 | -15.34 |
| 5 | 1 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 26.24 | 27.24 | -22.59 | -15.27 |
| 6 | 1 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 26.04 | 26.33 | 7.44 | -15.10 |
| 7 | 1 | 3 | 1 | 2 | 1 | 3 | 2 | 3 | 27.90 | 28.44 | -24.00 | -15.05 |
| 8 | 1 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 22.76 | 25.58 | 11.42 | -15.06 |
| 9 | 1 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 25.41 | 26.19 | 14.47 | -15.10 |
| 10 | 2 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 26.19 | 26.07 | 10.42 | -15.08 |
| 11 | 2 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 25.93 | 25.93 | 9.93 | -15.00 |
| 12 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 2.15 | 9.85 | 8.67 | -15.13 |
| 13 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 26.37 | 26.85 | 7.39 | -15.10 |
| 14 | 2 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 25.88 | 27.02 | 9.06 | -15.12 |
| 15 | 2 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 26.58 | 26.15 | 9.80 | -15.03 |
| 16 | 2 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 25.91 | 28.53 | 17.34 | -15.12 |
| 17 | 2 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 24.30 | 26.83 | 15.05 | -15.11 |
| 18 | 2 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 24.59 | 25.39 | 8.77 | -15.09 |
| Optimum Condition |  |  |  |  |  |  |  |  | 35.04 | 28.85 | 12.65 | -15.06 |

$\mathrm{SN}(\mathrm{a}<\mathrm{b})$


Fig-1 SN ratio to Type-1 (upper) and Type-2(lower)


Fig-2 Correlation: Type-1(left), Type-2(right)
Fig-2 shows the correlation charts between the optimum condition output(b) and the highest one(a) $\square$ in the $\mathrm{L}_{18}$ dataset of the dotted circle.
If Taguchi suggestion was right on step 1 at his two-step design, all of optimum condition was upper side of the dotted circled line. Clearly, type 2 was against it, it is a contradiction in Taguchi. Type 1 is $39 \%$, Type 2 is $61 \%$ on sites.

## 4.Data-base for step 1 problems

We have seen a lot of case studies Type2 that the optimum outputs(b) were inside the dotted line at the design and experiment sites at 1980s-2018s.
Taguchi selected and introduced the formal case studies to outside after screening to follow the success cases to support his way which were done at the organization like institute or company or academia until 1980s. People was sure there are potential bias by Taguchi for the content of cases. There were no inconvenient cases as public ones for him.
So, we selected the cases of almost open voluntary applications of the Japanese Quality Engineering association (JQEA) which was established at 1993 to eliminate bias. We selected 10 years cases until 2003 to 2012 for data-base.
Selection criteria are satisfied with
1: The optimum condition
Select the highest SN ratio
2. Characteristic

Target, Dynamic, Minimum
3: Orthogonal array

$$
\mathrm{L}_{9}, \mathrm{~L}_{18}, \mathrm{~L}_{27}, \mathrm{~L}_{36}
$$

4. Missing data Out of cases.
Originally 171 case studies were selected as $62 \%$ problems ${ }^{[2]}$. This report just used 159 with eliminating some cases to follow for survey criteria. We will list all of the database ${ }^{[9]}$ to Table 2 for this report.

Table 2 Database 2003-2012

| QES2003 |  |  |  |  |  | a(db) | b(db) | b-a |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen <br> ce |  |
| No | Group | Experiment | OA | Data | Analysis | Ex-Best | Optmize |  | * $=\mathrm{a}<\mathrm{b}$ |
| 14 | Ricoh | Developing | 18 | Current | Dynamic | -15.32 | -19.70 | -4.38 | 5 |
| 18 | Ricoh | Sensitive paper | 18 | gray-scale | Dynamic | 42.25 | 43.87 | 1.62 | * |
| 24 | Orient | Motor | 18 | shift-time | Dynamic | 128.55 | 128.36 | -0.19 | 4 |
| 25 | Takano | pp-resin | 18 | push-displace | Dynamic | -12.57 | -10.32 | 2.25 | * |
|  |  |  | 18 |  | Dynamic | 1.67 | 5.58 | 3.91 |  |
| 26 | Alps | CAE-Switch | 18 | force-angle | Dynamic | 23.20 | 23.48 | 0.28 |  |
| 28 | Takano | Gate System | 18 | Angle-shift | Dynamic | 14.56 | 15.08 | 0.52 |  |
| 31 | Fuji | CAE-Handlig | 18 | position-curve | Dynamic | 21.08 | 14.07 | -7.01 | 10 |
| 34 | Ricoh | CAE-Handlig | 18 | shift-quantity | Target | 11.84 | 11.84 | 0.00 | 1 |
| 41 | Shindengen | Semi-Conductor | 18 | current-voltage | Dynamic | 26.99 | 29.94 | 2.95 |  |
| 48 | Aishin | sintering | 18 | depth-density | Standard | 9.04 | 8.53 | -0.51 | 3 |
| 50 | Ricoh | Resin-Extension | 18 | Angle-shift | Dynamic | 11.98 | 9.01 | -2.97 | 5 |
| 67 | Orient | Motor | 18 | voltage-Current | Dynamic | -5.55 | -11.83 | -6.28 | 8 |
| 69 | Mazda | Welging | 18 | fource-angle | Dynamic | 20.96 | 30.54 | 9.58 | * |
| 78 | Isuzu | Holing | 18 | kw-hour | Dynamic | 15.11 | 17.89 | 2.78 | * |
|  |  |  | 18 |  | Dynamic | 33.10 | 32.01 | -1.09 | 2 |
| 83 | Isuzu | Metalfinishing | 18 | power | Dynamic | 31.71 | 29.99 | -1.72 | 3 |
| 84 | Epspn | Cutting | 18 | cutwight-time | Dynamic | 9.85 | 7.91 | -1.94 | 2 |
| 87 | MORI-seiki | CAE-air | 18 | flowspeed-quantity | Dynamic | -18.16 | -18.23 | -0.07 | 3 |
| 88 | Mitsuba | Static paint | 18 | Air pressure-speed | Dynamic | 51.28 | 51.43 | 0.14 | * |
| 102 | Matsuura | imageing | 18 | Positionning | Dynamic | 19.67 | 20.56 | 0.89 | * |

No is the register number. Group is the experiment organization. Experiment is the main subject field. OA is orthogonal array size. Data is the analysis for characteristics. * is the case of Type 1. b-Oder is the ranking order to dataset including optimum.

| QES2004 |  |  |  |  |  | a（db） | b（db） | b－a | b－Oder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen ce |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize |  | ＊＝a＜b |
| 4 | Ricoh | Painting | 18 | floespeed | Standard | 66.30 | 66.30 | 0.00 | 1 |
| 6 | Mitsuba | painting | 18 | pressure | Standard | 43.30 | 39.05 | －4．25 | 8 |
| 13 | H1 | Plating | 18 | plate wight | Dynamic | 28.66 | 24.21 | －4．45 | 2 |
| 15 | TokaiRika | Painting | 18 | Coat weight | Dynamic | 16.20 | 16.00 | －0．20 | 2 |
| 16 | Mitsuba | Static－painting | 18 | Thickness | Dynamic | 28.10 | 27.70 | －0．40 | 2 |
| 18 | テラル | powder painting | 18 | voltage－time | Dynamic | 25.20 | 17.00 | －8．20 | 6 |
| 19 | Alps | Soldering | 18 | Deffect | Dynamic | 76.34 | 74.46 | －1．88 | 6 |
| 24 | Mori | Clamp | 18 | Binding | Target | 11.45 | 11.45 | 0.00 | 1 |
| 25 | MORI | Structure（＊） | 18 | Distance | Dynamic | 58.99 | 61.00 | 2.01 | ＊ |
| 33 | TokaiRika | Drilling | 18 | Power－cutting | Dynamic | 28.05 | 26.28 | －1．77 | 4 |
|  |  |  | 18 |  | Dynamic | 21.87 | 17.90 | －3．97 | 9 |
| 34 | Ryobi | Cutting | 18 | Power－cutting | Dynamic | －9．92 | －12．22 | －2．30 | 5 |
|  |  |  | 18 |  | Dynamic | 9.90 | 9.86 | －0．04 | 2 |
| 37 | Toyama | Cutting | 18 | Power－time | Dynamic | 38.03 | 36.18 | －1．85 | 2 |
| 60 | Nissan | Steering | 18 | Speed－torque | Dynamic | 39.95 | 38.01 | －1．94 | 7 |
| 61 | Sekisui | Molding | 18 | stable－time | Dynamic | －1．88 | 0.00 | 1.88 | ＊ |
|  |  |  | 18 |  | Dynamic | －0．86 | －0．58 | 0.29 | ＊ |
| 62 | Ryobi | Casting | 18 | Transform | Dynamic | 25.79 | 20.45 | －5．34 | 2 |
| 70 | Sanaroi | Forging | 18 | Chemical reaction | Dynamic | 43.99 | 40.44 | －3．55 | 10 |
| 73 | Xerox | Develping | 18 | Voltage－tonner | Standard | 41.65 | 42.37 | 0.72 | ＊ |


| QES2005 |  |  |  |  |  | a（db） | b（db） | b－a | b－Oder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen ce |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize |  | ＊$=\mathrm{a}<\mathrm{b}$ |
| 12 | Alps | CMOS | 18 | Ope－amp | Dynamic | 71.17 | 71.74 | 0.57 | ＊ |
| 16 | Alps | High－frequency | 18 | part | Dynamic | 63.3 | 59.17 | －4．13 | 3 |
| 20 | Sekisui | Production | 18 | dia | Dynamic | 54.37 | 54.94 | 0.57 | ＊ |
|  |  |  | 18 |  | Dynamic | 28.5 | 28.85 | 0.35 | ＊ |
| 21 | Toa－chem | painting | 18 | Weight－Curve | Dynamic | 56.3 | 56.6 | 0.3 | ＊ |
| 22 | Sekisui | Molding | 18 | Thick－time | Dynamic | 33.52 | 23.64 | －9．88 | 16 |
| 23 | Mitsuba | Metalfinishing | 18 | Vent－position | Dynamic | 8.08 | 9.64 | 1.56 | ＊ |
| 24 | Toukairika | Mgfinishing | 18 | die－cast | Min | －18．56 | －17．66 | 0.9 | ＊ |
| 26 | Nissei | Molding | 18 | tighitning | Target | 21.54 | 21.01 | －0．53 | 3 |
| 27 | Asahkasei | Dyalyzer | 18 | Housing | Target | 21.39 | 18.44 | －2．95 | 7 |
|  |  |  | 18 |  |  | 28.85 | 28.86 | 0.01 | ＊ |
|  |  |  | 18 |  |  | 36.66 | 38.86 | 2.2 | ＊ |
| 31 | Nissei | Molding | 18 | weight－taime | Dynamic | 24.76 | 17.6 | －7．16 | 10 |
| 65 | Sekisui | Addhessive | 18 | time－viscosity | Dynamic | 3.8 | 0.79 | －3．01 | 3 |
| 67 | Toacemi | Concreate | 18 | Square－power | Dynamic | －3．8 | －3．2 | 0.6 | ＊ |
| 86 | Mitsubishi | Motor | 18 | Noise | Target | 50.75 | 51.84 | 1.09 | ＊ |
| 93 | Ryoubi | Bearing | 18 | Press | Standard | 19.94 | 23.4 | 3.46 | ＊ |
| 95 | Ryobi | Cut | 18 | Power－cutwight | Dynamic | 11.6 | 1.23 | －10．37 | 7 |
|  |  |  | 18 |  | Dynamic | 38.17 | 34.27 | －3．9 | 2 |
| 97 | Gunma | Casing | 18 | dimension | Dynamic | 27.73 | 26.57 | －1．16 | 3 |
| 99 | Noritake | Cut | 18 | Power－cutwight | Dynamic | 4.651 | 4.885 | 0.234 | ＊ |
|  |  |  | 18 |  | Dynamic | 4.903 | 4.797 | －0．106 | 2 |
| 101 | Mazda | Cleaning | 18 | Brushing | Dynamic | 24.37 | 24.21 | －0．16 | 2 |
| 109 | Ricoh | powder paint | 18 | dimension－time | Dynamic | 41.38 | 43.65 | 2.27 | ＊ |


| QES2006 |  |  |  |  |  | a（db） | b（db） | b－a | $\begin{array}{\|l\|} \hline \text { b-Oder } \\ \hline{ }^{*}=\mathrm{a}<\mathrm{b} \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | $\begin{array}{\|c\|} \hline \text { Differen } \\ \text { ce } \\ \hline \end{array}$ |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize |  |  |
| 14 | Mitsubishi | Gear | 18 | Gear | Standard | 40.12 | 39.36 | －0．76 | 2 |
| 15 | Gunma | Vibration | 18 | vibration | Dynamic | 9.54 | 9.3 | －0．24 | 2 |
| 17 | Nissei | Tie－bar nut | 18 | Curve | Dynamic | －26．36 | －28．99 | －2．63 | 6 |
| 18 | Maruyama | Brower | 18 | Airspeed | Target | 12.5 | 11.3 | －1．20 | 4 |
| 19 | Mitsubishi | Espak－finish | 18 | dimension | Standard | 80.3 | 79.8 | －0．50 | 3 |
| 23 | Isuzu | Blowspeed | 18 | condensor | Standard | 11.74 | 9.95 | －1．79 | 4 |
| 24 | Alps | Lazer－add | 18 | welding | Dynamic | －33．66 | －35．87 | －2．21 | 7 |
| 25 | Sekisui | tubewelding | 18 | Arc－weld | Dynamic | －19．47 | －20．18 | －0．71 | 3 |
| 29 | Shizuoka | Add－almi | 18 | Epoxy | Dynamic | 15.76 | 7.9 | －7．86 | 3 |
| 30 | Shizuoka | Add－copper | 18 | Epoxy | Dynamic | 7.09 | 5 | －2．09 | 3 |
| 31 | Shizuoka | Supersonic | 18 | Welding | Dynamic | 4.52 | 0.74 | －3．78 | 3 |
| 33 | NEC | Heat－add | 18 | forse－dim | Dynamic | 21.9 | 21.2 | －0．70 | 2 |
|  |  |  | 18 | forse－dim | Average | 9.82 | 9.78 | －0．04 | 2 |
| 40 | Nissei | sliding | 18 | power－gap | Dynamic | 6.6 | 5.38 | －1．22 | 2 |
| 51 | Alpine | Surbo－mech | 18 | res－wave | Standard | 100.21 | 100.54 | 0.33 | ＊ |
|  |  |  | 27 | res－wave | Standard | 103.77 | 103.93 | 0.16 | ＊ |
| 58 | Mazda | Spline | 18 | package qty | Standard | 4.67 | －2．69 | －7．36 | 6 |
| 59 | Isuzu | Welding | 18 | welght－dimenssion | Dynamic | －5．26 | －8．1 | －2．84 | 2 |
| 85 | Sunalloy | Ally－finish | 18 | wight－abrasion | Dynamic | 32.35 | 31.4 | －0．95 | 2 |
|  |  |  | 18 | weight－trace | Dynamic | 36.4 | 35.3 | －1．10 | 4 |
| 88 | Ryoubi | Spraying | 18 | Volume－dimension | Dynamic | 47.87 | 45.5 | －2．37 | 2 |
| 89 | Alpine | Screw | 18 | torqu－angle | Dynamic | 32.46 | 22.34 | －10．12 | 14 |
| 91 | MORI | vibration | 18 | dimension | Target | －28．717 | －27．616 | 1.10 | ＊ |
| 92 | Isuzu | Collision | 18 | accelarate | Standard | 42.83 | 42.95 | 0.12 | ＊ |
|  |  |  | 18 |  |  | 22.84 | 18.78 | －4．06 | 3 |
| 94 | Denki－Uni | Cutting | 18 | power－cut | Dynamic | 46.2 | 46.9 | 0.70 | ＊ |
| 95 | Mitsubishi | Lamp－vib | 18 | Integ－Vib | Dynamic | 47.4 | 51.4 | 4.00 | ＊ |
| 114 | Kao | Sullary | 18 | separation | Dynamic | 8.29 | 25.59 | 17.30 | ＊ |
| 119 | Nisan | Compo | 18 | colure | Dynamic | －13 | －14．69 | －1．69 | 2 |
| 121 | Isuzu | Material | 18 | forse－expand | Standard | 79.94 | 71.91 | －8．03 | 2 |
| 122 | Isuzu | Material | 18 | forse－expand | Dynamic | －0．81 | －9．27 | －8．46 | 7 |
| 124 | Alps | Semi－con | 18 | Etching | Dynamic | 61.78 | 61.98 | 0.20 | ＊ |
| 125 | Sanpo | Touhu | 18 | viscosity－time | Dynamic | －0．334 | －0．449 | －0．12 | 2 |


| QES2007 |  |  |  |  |  | a（db） | b（db） | b －a | b－Oder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen ce |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize |  | ＊$=$ a＜b |
| 11 | Shizuoka | Sonic connect | 18 | weight | Dynamic | 4.19 | 2.05 | －2．14 | 2 |
| 15 | Ryobi | Drilling | 18 | Drilweight－power | Dynamic | 12.76 | 12.26 | －0．5 | 2 |
|  |  |  | 18 |  | Dynamic | －12．65 | －15．29 | －2．64 | 6 |
| 43 | Toa | light－adhesive | 18 | dim－Temp | Standard | 35.6 | 35.6 | 0 | 1 |
| 45 | Mazda | Die design | 18 | weight | Dynamic | －37．47 | －43．12 | －5．65 | 4 |
| 47 | imetal | Die design | 18 | Uniformity | Dynamic | 15.66 | 12.65 | －3．01 | 6 |
| 48 | Toa | Resin | 18 | colore | Standard | 58.38 | 60.11 | 1.73 | ＊ |
| 51 | e－Charging | e－photo | 9 | charging | Standard | 23.12 | 23.67 | 0.55 | ＊ |
| 80 | IwateUniv | Reduc－effice | 18 | Reduc－device | Dynamic | 27.902 | 35.04 | 7.138 | ＊ |
| 84 | Toyama | Lubricant | 18 | Fretting | Dynamic | 57.79 | 61.2 | 3.41 | ＊ |
| 99 | Gunma | Molding | 18 | dimmension | Dynamic | 34.31 | 30.27 | －4．04 | 8 |
| 102 | Hitachi | Powder metal | 18 | molding | Dynamic | 24.89 | 24.08 | －0．81 | 6 |


| QES2008 |  |  |  |  |  | a（db） | b（db） | b－a |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen <br> ce |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize |  | ＊$=$ a＜b |
| 3 | Alps | Welding | 36 | dimmension | Dynamic | 77.19 | 78.18 | 0.99 | ＊ |
| 7 | Alps | Handling | 18 | Distance | Dynamic | 0.00 | 0.00 | 0.00 | 2 |
| 12 | Alpine | Measure | 18 | Press－change | Dynamic | 29.43 | 32 | 2.57 | ＊ |
| 13 | Konica | Measure | 18 | Length | Dynamic | 9.59 | 8.8 | －0．79 | 3 |
| 19 | Toyama | Machine | 18 | Speed | Dynamic | 66.02 | 66.85 | 0.83 | ＊ |
| 31 | kagoshima | Lazer | 18 | Melting | Dynamic | 10.45 | 17.57 | 7.12 | ＊ |
| 37 | Gunma | CAD mold | 18 | Molding | Target | 3.8128 | 2.79 | －1．023 | 4 |
| 44 | Shizuoka | Sonic connect | 18 | Strength | Dynamic | 7.242 | 6.345 | －0．897 | 4 |
| 45 | Alpine | Soldering | 18 | Resistance | Dynamic | 2.58 | －10．73 | －13．31 | 19 |
| 46 | Shizuoka | Connect | 18 | Strength | Dynamic | 11.59 | 11.63 | 0.04 | ＊ |
| 48 | Alps | die－bond | 18 | Strength | Dynamic | 13.4 | 15.34 | 1.94 | ＊ |
| 50 | Konica | handling | 18 | Speed | Target | 29.09 | 27.68 | －1．41 | 3 |
| 51 | Fijinon | CAE－handle | 36 | Accuracy | Dynamic | 34.59 | 31.76 | －2．83 | 18 |
| 80 | Kagoshima | Water－heli | 18 | Time | Dynamic | 19.3 | 22.81 | 3.51 | ＊ |
| 90 | Kao | Measure | 18 | Uniformity | Dynamic | 23.48 | 24.53 | 1.05 | ＊ |
| 93 | Shizuoka | AntiWet | 18 | Water Qty | Dynamic | 7.33 | 8.77 | 1.44 | ＊ |
| 147 | Nikon | Coolong | 18 | Speed | Dynamic | 13.29 | 11.48 | －1．81 | 2 |


| QES2009 |  |  |  |  |  | a（db） | b（db） | b－a | b－Oder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize | ce | ＊$=\mathrm{a}<\mathrm{b}$ |
| 11 | Shizuoka | Conneting | 18 | Strength | Dynamic | 2.17 | 12.08 | 9.91 | ＊ |
| 20 | Toa | Compound | 18 | Emission | Dynamic | 30.28 | 26.4 | －3．88 | 2 |
| 24 | Nitsubishi | Wiper | 18 | Speed | Dynamic | 17.75 | 14.97 | －2．78 | 13 |
| 64 | Aishin | Compuressor | 18 | Out Qty | Dynamic | 15.3 | 14.55 | －0．75 | 4 |
| 87 | Toa | Semicom | 18 | Change | Dynamic | －19．9 | －23．5 | －3．60 | 2 |
| 92 | Gunma | Molding | 18 | Dimension | Dynamic | 13.13 | 12.92 | －0．21 | 2 |
| 93 | Ichiko | Molding | 18 | Dimension | Dynamic | 19.03 | 19.03 | 0.00 | 1 |


| QES2010 |  |  |  |  |  | a（db） | b（db） | b －a | b－Oder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen ce |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize |  | ＊$=\mathrm{a}<\mathrm{b}$ |
| 8 | Mzda | Welding | 18 | Current | Dynamic | 41.84 | 42.06 | 0.22 | ＊ |
| 16 | Mitsubishi | Control | 18 | quntity | Dynamic | 48.82 | 49.75 | 0.93 | ＊ |
|  |  |  | 18 |  | Dynamic | 38.41 | 39.34 | 0.93 | ＊ |
|  |  |  | 18 |  | Dynamic | 25.26 | 25.81 | 0.55 | ＊ |
| 31 | Shizuoka | Adhesive | 18 | Strength | Dynamic | 22.279 | 21.25 | －1．03 | 2 |
| 32 | Shizuoka | Adhesive | 18 | Strength | Dynamic | 17.59 | 2.87 | －14．72 | 5 |
| 33 | Shizuoka | Adhesive | 18 | Strength | Dynamic | 9.33 | 4.7 | －4．63 | 3 |
| 42 | Sunalloy | Poder | 18 | Time | Dynamic | 36.67 | 35.87 | －0．80 | 2 |
| 50 | Gunma | Molding | 18 | Thickness | Target | 18.74 | 18.74 | 0.00 | 1 |
| 55 | Mazda | Assenmbly | 18 | Change | Dynamic | －8．71 | －6．74 | 1.97 | ＊ |
| 58 | Toyama | Light | 18 | lluminant | Dynamic | 82.1 | 81.76 | －0．34 | 2 |
| 67 | Alps | Bracket | 18 | Strength | Dynamic | －27．1 | －26．89 | 0.21 | ＊ |
| 79 | Alps | Jig | 18 | Torque | Dynamic | －12．3 | －14．4 | －2．10 | 2 |
| 90 | Toyama | light | 18 | lluminant | Dynamic | 47.88 | 48.56 | 0.68 | ＊ |


| QES2011 |  |  |  |  |  | a（db） | b（db） | b－a | b－Oder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize | ce | ＊$=\mathrm{a}<\mathrm{b}$ |
| 21 | Cannon | Paper handle | 18 | Time－length | Dynamic | 57.5 | 57.16 | －0．34 | 3 |
| 29 | Konica | Blast | 18 | Surface squre | Target | 23.3 | 22.44 | －0．86 | 6 |
| 77 | Toyama | Flow system | 18 | Gel ratio | Dynamic | 40.6 | 41.697 | 1.10 | ＊ |
| 84 | Konica | Measure | 18 | Surface squre | Dynamic | 9.68 | 14.43 | 4.75 | ＊ |
| 87 | Toa | Paint | 18 | Diffusion qty | Dynamic | 25.4 | 25.2 | －0．20 | 2 |
| 88 | Maruyama | Pump | 18 | Output | Dynamic | 17.3 | 16.97 | －0．33 | 3 |
| 96 | Rikoh | Paint | 18 | Thicness | Dynamic | 10.01 | 0.59 | －9．42 | 9 |


| QES2012 |  |  |  |  |  | a（db） | b（db） | b－a | b－Oder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conditions |  |  |  |  |  | SNratio | SNratio | Differen <br> ce |  |
| No | Group | Experiment | OA | Data | Analysis | Ex－Best | Optmize |  | ＊$=\mathrm{a}<\mathrm{b}$ |
| 34 | Canon | Paper handling | 18 | Time | Target | 26.68 | 16.16 | －10．52 | 18 |
|  |  |  | 18 |  | Standard | 35.75 | 36.03 | 0.28 | ＊ |
| 46 | Toyama | Illuminant | 18 | lightness | Dynamic | 30.77 | 33.7 | 2.93 | ＊ |
| 88 | Konica | Processing | 18 | light－strength | Dynamic | －28．17 | －25．75 | 2.42 | ＊ |

Table 3 shows the totaling results，type 1 was $39 \%$ ， Type2 was $61 \%$ ．There was just $1 \%$ difference compared to original［14］．It will be reached the same conclusion．

Table 3 Totaling result

| QES | 全体 | Type1 | Type2 |
| :---: | :---: | :---: | :---: |
| 2003 | 21 | 10 | 11 |
| 2004 | 20 | 4 | 16 |
| 2005 | 24 | 13 | 11 |
| 2006 | 33 | 9 | 24 |
| 2007 | 12 | 4 | 8 |
| 2008 | 17 | 9 | 8 |
| 2009 | 7 | 1 | 6 |
| 2010 | 14 | 7 | 7 |
| 2011 | 7 | 2 | 5 |
| 2012 | 4 | 3 | 1 |
| 計 | 159 | 62 | 97 |
| $\%$ | $100 \%$ | 39.0 | 61.0 |

If Taguchi suggestion is right on step 1 at his two steps design，type 1 at Table 3 should be $100 \%$ ．So， Taguchi two step design using SN ratio and sensitivity， it might be D grade．Engineers are very difficult to use it at design and experiment site．Because it is too poor prediction accuracy as optimizing tool for engineers to apply for their subjects．

## 5．The three reasons for $D$ grade

Taguchi two step design had been introduced in USA that engineer will not need to ask／think＂why reason＂ for optimizing mechanism＂，just do it．
We realized the something wrong at Taguchi two step design at $2008^{[3]}$ ，because there were so many cases that optimum outputs（b）were lower than the highest value（a）of $\mathrm{L}_{18}$ dataset．

We identified the some of reasons for it．We will introduce the main three reasons．

## 5．1．Problem on layout alternate columns to $\mathbf{L}_{18}$

We will show the problem with OTL Circuit（Fig3） which was introduced at chapter 11 by Subir Ghosh ${ }^{[4]}$ ． Its purpose is to reduce variation．
Fig－3 was eliminated outside DC power and input alternative current and $\mathrm{Vbe}_{1}=\mathrm{Vbe}_{3}=0.65 \mathrm{~V}$ ， $\mathrm{Vbe}_{2}=0.74 \mathrm{~V}$ ， $\mathrm{Ec}=12 \mathrm{~V}$ was fixed．We will use CAE simulation and target $\mathrm{Vm}=6$ ．

## 5．1．1．Formula of OTL circuit and factors ${ }^{[8]}$

Formula of Fig3：OTL circuit was the following with target $\mathrm{Vm}=6 \mathrm{~V}$ ．

$$
V_{m}=\left(V_{b 1}+V_{b e 1}\right) \frac{\beta R_{0}}{\beta R_{0}+R_{f}}+\left(E_{c}-V_{b e 3}\right) \frac{R_{f}}{\beta R_{0}+R_{f}}+\frac{V_{b e 2} R_{f} \beta R_{0}}{\left(\beta R_{0}+R_{f}\right) R_{c 1}}
$$

$\mathrm{Rb}_{1}, \mathrm{Rb}_{2}, \mathrm{Rf}, \mathrm{Rc}_{1}, \mathrm{Rc}_{2}$ were resistance and $\beta$ is current gain．Constants are following．

$$
\begin{gathered}
\mathrm{V}_{\mathrm{b} 1}=\mathrm{E}_{\mathrm{C}} \cdot \mathrm{R}_{\mathrm{b} 2} /\left(\mathrm{R}_{\mathrm{b} 1}+\mathrm{R}_{\mathrm{b} 2}\right): \mathrm{R}_{\mathrm{c}}=\mathrm{R}_{\mathrm{c} 2}+\mathrm{R}_{\mathrm{L}} \\
\mathrm{~V}_{\mathrm{be} 1}=\mathrm{V}_{\mathrm{be} 3}=0.65 \mathrm{~V}, \mathrm{Vbe}_{2}=0.74 \mathrm{~V}, \mathrm{Ec}=12 \mathrm{~V}
\end{gathered}
$$



Fig－3 OTL circuit and Target 6V
Table 4 Factors and Levels

| Factor | A：${ }^{\text {R }}$ b2／Rb1 |  | B：Rf |  | C：Rc2 |  | D：Rc1 |  | E：$\beta$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Level | 1 | 0.215 | 1 | 120.00 | 1 | 42.00 | 1 | 170.0 | 1 | 14 |
|  | 2 | 0.600 | 2 | 1200.00 | 2 | 420.00 | 2 | 1700.0 | 2 | 140 |
|  | 3 | 1.000 | 3 | 12000.00 | 3 | 4200.00 | 3 | 17000．0 | 3 | 1400 |

## 5．1．2． 6 types Layout ABCDE to $\mathrm{L}_{18}$

$\mathrm{L}_{18}$ has 7 factors with three levels． Table 4 has 5 factors，so We selected 6 type layout to $\mathrm{L}_{18}$ ． 5 factors ABCDE w ere arranged like the following：（1）（2）（3）（4） （5）（6）．

$$
\begin{array}{lll}
\text { (1) }: 23456 & \text { (2) }: 24567 & \text { (3) }: 25678 \\
\text { (4) }: 34567 & \text { (5) } & : 35678 \\
\text { (6) }
\end{array} 45678
$$

［Number is column position in $\mathrm{L}_{18}$ ］
Table 5 shows the layout and SN ratio．
Table 5 ABCDE arrange column

| No | Layout ABCDE to $\mathrm{L}_{18}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 23456 | 24567 | 25678 | 34567 | 35678 | 45678 |
|  | $(1$ | 2 | $(3$ | 4 | 5 | 6 |
| 1 | 26.60 | 26.60 | 26.60 | 26.60 | 26.60 | 26.59 |
| 2 | 26.58 | 26.58 | 26.58 | 27.54 | 27.54 | 27.54 |
| 3 | 26.33 | 26.33 | 26.33 | 28.81 | 28.81 | 28.81 |
| 4 | 27.11 | 26.83 | 26.86 | 25.68 | 25.73 | 25.73 |
| 5 | 26.86 | 27.16 | 20.13 | 27.16 | 20.13 | 20.13 |
| 6 | 20.13 | 22.57 | 27.11 | 22.69 | 28.68 | 28.68 |
| 7 | 28.79 | 30.05 | 28.45 | 26.44 | 25.67 | 26.83 |
| 8 | 29.01 | 19.59 | 34.76 | 19.37 | 32.46 | 34.76 |
| 9 | 35.08 | 28.48 | 20.34 | 28.48 | 20.34 | 19.75 |
| 10 | 25.54 | 22.10 | 31.30 | 22.10 | 31.30 | 34.34 |
| 11 | 22.07 | 25.59 | 25.54 | 26.78 | 26.75 | 25.54 |
| 12 | 31.30 | 23.61 | 22.07 | 26.47 | 25.04 | 23.95 |
| 13 | 27.09 | 23.81 | 32.79 | 21.91 | 29.63 | 32.79 |
| 14 | 23.83 | 48.69 | 27.29 | 48.69 | 27.29 | 28.79 |
| 15 | 25.17 | 26.79 | 27.55 | 28.42 | 29.01 | 26.58 |
| 16 | 28.45 | 35.56 | 24.92 | 30.03 | 21.93 | 24.92 |
| 17 | 34.76 | 28.79 | 26.25 | 27.29 | 25.17 | 23.37 |
| 18 | 20.34 | 28.97 | 28.67 | 28.97 | 28.67 | 27.09 |

Fig 4 showed factor effect chart of（1）－ （6）．Factor C ， E are almost same，but A ， $B$ ，$D$ are different pattern．Optimum con dition will be combined the highest level s of each factors．So，the optimum condit ions are dependent upon the layout posit ion to $\mathrm{L}_{18}$ ．


Fig-4 Layout of ABCDE \& Factor effect
The optimum conditions were combined for each the highest levels for SN ratio. So, the different 4 kinds optimum conditions were conducted with just different layout to $\mathrm{L}_{18}$. These differences are caused by Confounding effects by other columns. The level of main effects is mixed with the different number of interactions between columns. Table 6 shows typical one.

Table 6.1 c complete to full interaction ab

| $a \backslash b$ | 1 |  |  | 2 |  |  | 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 2 | 3 | 1 | 3 | 1 | 2 |
| 2 | 2 | 3 | 1 | 3 | 1 | 2 | 1 | 2 | 3 |
| 3 | 3 | 1 | 2 | 1 | 2 | 3 | 2 | 3 | 1 |
| $\mathbf{c}$ |  |  |  |  |  |  |  |  |  |

Columns a,b interaction affects to c column.

Table 6.2 Confounding: partial interaction with Empty space

| $2 \backslash 4$ | 1 |  |  | 2 |  |  | 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11 |  |  | 22 |  |  | 33 |  |


| $2 \backslash 5$ | 1 |  |  | 2 |  |  | 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11 |  |  | 22 |  |  | 33 |  |  |
| 2 |  | 33 |  |  | 11 |  |  | 22 |  |
| 3 |  |  | 22 |  |  | 33 |  |  | 11 |
| 4 |  |  |  |  |  |  |  |  |  |


| $2 \backslash 3$ | 1 |  |  | 2 |  |  | 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 |  | 2 | 3 |  | 3 | 1 |  |
| 2 | 2 |  | 1 | 3 |  | 2 | 1 |  | 3 |
| 3 | 33 |  |  | 11 |  |  | 22 |  |  |


| $8 \backslash 2$ | 1 |  |  | 2 |  |  | 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 |  | 2 |  | 1 | 33 |  |  |
| 2 | 2 | 3 |  | 3 |  | 2 | 11 |  |  |
| 3 | 3 | 1 |  | 1 |  | 3 | 22 |  |  |
| 7 |  |  |  |  |  |  |  |  |  |


| $2 \backslash 5$ | 1 |  |  | 2 |  |  | 3 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :---: |
| 1 | 1 | 2 |  | 2 | 3 |  | 3 | 1 |  |
| 2 | 2 | 3 |  | 3 | 1 |  | 1 | 2 |  |
| 3 | 3 | 1 |  | 1 | 2 |  | 2 | 3 |  |

Full interaction is $27\left(3^{3}\right) . L_{18}$ is partial and it is less max 18 to minus 9 empty spaces.

### 5.2. Noise type and different optimum condition

Noise factors have two kinds. One is the compound noise ( $\mathrm{N}_{1}, \mathrm{~N}_{2}$ ) and the others is orthogonal table noise. There was one explanation that compound noise factor $\mathrm{N}_{1}$, $\mathrm{N}_{2}$, will reduce the experiment numbers and maintain the same optimum condition.
But it was a wrong information.

### 5.2.1. Validation Case for Thermostat Circuit ${ }^{[6]}$

Fig-5 on $x$ Thermostat circuit ${ }^{[8]}$ with $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}$, $\mathrm{R}_{5}, \mathrm{R}_{12}, \mathrm{Ez}, \mathrm{E}_{0}$.


Fig-5 Thermostat circuit

$$
\begin{equation*}
x=\frac{\frac{R_{3} R_{12}}{R_{3}+R_{4}} R_{2}\left(E_{z} R_{5}+E_{0} R_{1}\right)}{E_{z}\left(R_{1} R_{2}+R_{1} R_{5}+R_{2} R_{5}\right)-R_{2}\left(E_{z} R_{5}+E_{0} R_{1}\right)} \tag{1}
\end{equation*}
$$

The current constant is $: 3.9 \mathrm{k} \Omega, \mathrm{R}_{2}: 7.5 \mathrm{k} \Omega, \mathrm{R}_{3}: 1.0 \mathrm{k} \Omega$, $\mathrm{R}_{5}: 360 \mathrm{k} \Omega$, $\mathrm{R}_{12}: 3.3 \mathrm{k} \Omega$, Ez: $5.3 \mathrm{~V}, \mathrm{E}_{0}: 10.1 \mathrm{~V}, \mathrm{R}+/-10 \%$ Ez+/-0.3V, $\mathrm{E}_{0}+/-0.5 \mathrm{~V}$ is noise.
First level is half of R , Third level is double of R . We layout to the 4-8 columns as inner orthogonal array. Noise R is $4-8$ columns, noise $\mathrm{E}_{0}$ and Ez were layout to second and third columns. They were layout to outer Orthogonal array.

Experiment was done with inner and outer product type. Table 7 shown the results.

Table 7 Orthogonal array results


### 5.2.2. Compound noise factors

To center value of the combination Factor R,Ez,E0 were changed by just one factor at the same time, to the down tendency is $\mathrm{N}_{1}$, the upper one is $\mathrm{N}_{2}$. Table 8 shown compound noise factor. Table 9 shows SNratio. Table 8 compound noise factor


Table-9 Noise type and SN ratio

| Control factors |  |  |  |  |  | Compound noise |  |  | OA noise |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | R1 |  | R3 | R5 | R12 | N1 |  | SN | SN |
| 1 | 1 | 1 | 1 | 1 | 1 | 0.560 | 1.045 | 6.981 | 17.487 |
| 2 | 2 | 2 | 2 | 2 | 2 | 1.121 | 2.089 | 6.981 | 17.487 |
| 3 | 3 | 3 | 3 | 3 | 3 | 2.241 | 4.179 | 6.981 | 17.487 |
| 4 | 1 | 2 | 2 | 3 | 3 | 2.486 | 4.582 | 7.149 | 17.268 |
| 5 | 2 | 3 | 3 | 1 | 1 | 2.792 | 5.519 | 6.172 | 17.420 |
| 6 | 3 | 1 | 1 | 2 | 2 | 0.160 | 0.298 | 7.042 | 17.361 |
| 7 | 2 | 1 | 3 | 2 | 3 | 1.114 | 2.059 | 7.103 | 17.525 |
| - | 3 | 2 | 1 | 3 | 1 | 0.278 | 0.515 | 7.103 | 17.525 |
| 9 | 1 | 3 | 2 | 1 | 2 | 4.654 | 9.165 | 6.226 | 17.214 |
| 10 | 3 | 3 | 2 | 2 | 1 | 0.937 | 1.786 | 6.676 | 17.631 |
| 11 | 1 | 1 | 3 | 3 | 2 | 1.777 | 3.261 | 7.210 | 17.660 |
| 12 | 2 | 2 | 1 | 1 | 3 | 0.700 | 1.333 | 6.676 | 17.069 |
| 13 | 2 | 3 | 1 | 3 | 2 | 1.256 | 2.338 | 7.011 | 17.245 |
| 14 | 3 | 1 | 2 | 1 | 3 | 0.334 | 0.631 | 6.810 | 17.407 |
| 15 | 1 | 2 | 3 | 2 | 1 | 2.616 | 4.868 | 7.011 | 17.593 |
| 16 | 3 | 2 | 3 | 1 | 2 | 0.971 | 1.864 | 6.568 | 17.728 |
| 17 | 1 | 3 | 1 | 2 | 3 | 2.723 | 5.156 | 6.763 | 17.004 |
| 18 | 2 | 1 | 2 | 2 | 1 | 0.446 | 0.820 | 7.195 | 17.678 |
| BM | 2 | 2 | 2 | 2 | 2 | 1.121 | 2.089 | 6.981 | 17.487 |



Fig 5 Orthogonal array and compound noise

Fig 5 shows Factor effect chart $x$ on two type. There are some differences. Table 10 shows the highest levels to type noise.

Table 10 Highest level to two types

| Factor | Noise style |  | Consistency |
| :---: | :---: | :---: | :---: |
|  | OA | Compound |  |
| $R_{1}$ | 3 | $\mathbf{1}$ | $\times$ |
| $R_{2}$ | 1 | $\mathbf{1}$ | $\bigcirc$ |
| $R_{3}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\times$ |
| $R_{5}$ | 3 | $\mathbf{3}$ | $\bigcirc$ |
| $R_{12}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\times$ |

There are three difference factors $\mathrm{R}_{1}, \mathrm{R}_{3}, \mathrm{R}_{12}$. So, we will show at Table 11 correlation coefficient

Table 11 correlation coefficient

| noise | $R_{1}$ | $R_{2}$ | $R_{3}$ | $R_{5}$ | $R_{12}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Orthgonal array | 0.31 | -0.379 | 0.585 | 0.183 | -0.535 |
| Compound | -0.037 | -0.574 | -0.012 | 0.735 | 0.079 |

If The difference of plus and minus on the orthogonal array and compound noise array are inverse, Optimum levels of Table 9 are difference in them.

### 5.3. Reverse data for compound noise factor ${ }^{[6]}$.

Compound error factor is usually consisted with $\mathrm{N}_{1}\left(\mathrm{y}_{1}\right)<\mathrm{N}_{2}\left(\mathrm{y}_{2}\right)$ at the standard condition. Robust design will use interaction. So, it will give $\mathrm{y}_{1}$ and $\mathrm{y}_{2}$ intercept like Fig 7.


Fig-6 $\left(y_{1}-y_{2}\right) \&\left(y_{1}-y_{2}\right)^{2}$
To do robust design, there is premise that is interaction between factors. So, frequently, $y_{1}, y_{2}$ will take reverse position like $\mathrm{N}_{1}\left(\mathrm{y}_{1}\right)>\mathrm{N}_{2}\left(\mathrm{y}_{2}\right)$. Taguchi Robust design using decomposition of sum of square could calculate it but could not design by it. If try to reduce variation for $y_{1}, y_{2}$ on Fig 6, it is ok just with $y_{1}=y_{2}$. For Example, if $\left(y_{1}-y_{2}\right)$ is -4 , engineer will shift the factor tune from minus side to 0 . If $\left(y_{1}-y_{2}\right)$ is +4 , engineer will shift the other factor tune from plus side to 0 .

If $\left(y_{1}-y_{2}\right)^{2}$ is $16\left(\right.$ square $=(-4)^{2}$, or $\left.=(4)^{2}\right)$ on Fig 6, there are two points at right and left to center. It cannot detect the factor to tune at the Taguchi. We will show the real mixture data on Table 12. Table 12 shows the reverse data of Molten cast

Table 12 Molten cast : Reverse data (Red Bold)

| $\begin{aligned} & \text { EX } \\ & \text { No } \end{aligned}$ | A | B | C | D | $\mathrm{N}_{1}$ | $\mathrm{N}_{2}$ | $\begin{array}{\|c\|} \hline \text { SN } \\ \text { ratio } \end{array}$ | Sens <br> itvity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathrm{y}_{1}$ | $\mathrm{V}_{2}$ |  |  |
| 1 | 3 | 3 | 3 | 1 | 14.0 | 11.6 | 17.7 | 22.1 |
| 2 | 6 | 2 | 2 | 1 | 17.7 | 17.0 | 30.9 | 24.8 |
| 3 | 6 | 3 | 1 | 2 | 9.1 | 12.0 | 14.0 | 20.4 |
| 4 | 1 | 3 | 1 | 1 | 13.0 | 11.0 | 18.8 | 21.5 |
| 5 | 1 | 1 | 3 | 2 | 14.7 | 17.6 | 17.9 | 24.1 |
| 6 | 2 | 1 | 3 | 3 | 12.2 | 12.6 | 32.8 | 21.8 |
| 7 | 2 | 2 | 2 | 2 | 15.2 | 20.2 | 14.0 | 24.9 |
| 8 | 3 | 1 | 1 | 3 | 11.5 | 11.4 | 44.2 | 21.2 |
| 9 | 4 | 2 | 3 | 3 | 10.6 | 19.2 | 7.5 | 23.1 |
| 10 | 5 | 2 | 1 | 1 | 15.3 | 12.3 | 16.2 | 22.8 |
| 11 | 4 | 1 | 2 | 1 | 9.8 | 15.6 | 9.7 | 21.8 |
| 12 | 5 | 3 | 2 | 3 | 12.0 | 15.8 | 14.3 | 22.8 |

No1(SN:17.7), No5(SN:17.9) are almost same to SN ratio. However, raw data are reverse $\operatorname{Nol}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right.$ : 14.0,11.6) and $\operatorname{No5}\left(\mathrm{y}_{1}, \mathrm{y}_{2}: 14.7,17.6\right)$. So, tunes are different directions. SN ratio can not optimize the mixture of forward and reverse data like Table 12.
We show the statistical data 107 case to 1993-2017. $83 \%$ Actual trials, $25 \%$ numeric trails, 25\% CAE trail are concluded with the mixture data to Table 23..

Table 13 Mixture data in case studies


## 6.Summar and Conclusion

Taguchi two step design was started at 1980's. We inspected using the judgement level on focusing on design-experiment site that optimum condition(b) detected with factor effect chart should be higher than the highest(a) of the $\mathrm{L}_{18}$ data set for case studies for 2003-2012 Japan quality Engineering Association. So, it should be $\mathrm{a}<\mathrm{b}$ for all of cases, but it was just $39 \%$, actually $\mathrm{a}>\mathrm{b}$ is $61 \%$ on Table 3. It meant it is just D grade.

We introduced the three reasons for D grade.
1: Optimum dependent on layout columns in $\mathrm{L}_{18}$
2: Optimum are different with noise format between compound and orthogonal array.
3: Reverse data for noise: SN ratio can be calculated, but cannot design for it.

## 7: Discussions

There was the different fact that Taguchi campaign introduced us that if we used SN ratio (average ${ }^{2}$ /diversion $=y^{2} / \sigma^{2}$ ) at design and experiment site, it means the same thing to reduce the social loss $\sigma^{2}$ on loss function $\mathrm{k}(\mathrm{y}-\mathrm{t})^{2}$. (See Fig7)
Engineers were affected with SN-ratio concept on Taguchi two step design contributing to reduce variation also at the same time to reducing society loss. However, it was not fact. Orthogonal array noise will be presented for the social variation, also compound noise factor N was supposed to be compacted size of orthogonal array noise. Actually, they will give the different optimum.


Fig-7 Taguchi campaign at 1980's
1980's Taguchi case studies for outside were introduced after screening which were done at the organization. So, there were no worse cases to outside.
SLK ${ }^{[7]}$ detected the problems of tuning process after minimized variation for Taguchi as PerMIA (1987).
PerMIA was the biggest concern at the statistic in USA, however it did not continue to discuss because there were not enough the case studies to judge to it. People did not know there were many prediction trouble cases on design sites.
The next problem of Taguchi after PerMIA was inconsistency to make the compound noise. Hou ${ }^{[8]}$ (2002) pointed the cases that compound noise factor did not replace for orthogonal array. Also, Matsuura (2014) ${ }^{[9]}$ suggested the output of order $\mathrm{N}_{1}\left(\mathrm{y}_{1}\right)$ and $\mathrm{N}_{2}\left(\mathrm{y}_{2}\right)$ to compound noise will be possibility reverse/replace cause by the interaction between inner array and outer of noise. It was actually confirmed at cases.
We as engineer at the first time realized the cause of prediction troubles were the causes in Taguchi process itself at $2008^{[3]}$. They have been happened in design /experiment site to confirm with the detail difference the prediction and optimum run results.
. So, we/engineers started to survey as database ${ }^{[10]}$ the proceeding volunteer actual case studies on 2003-2012 of JQEA. Because we are sure almost no bias.

## 8. Near Future Research

Our target is "the smaller trials with higher accuracy for researching". It will be the new statistics area. We are looking for the new compact matrix for it.

## Reference

[1] Taguchi, G and Wu, Y (1980), Introduction to off-line Quality Control, Japan Quality Control association.
[2] Teruo MORI (2018): "The 62\% Problems of SN Ratio and New Conference Matrix for Optimization" , Proceeding of the pacific Rim Statistical Conference in Korea for Production Engineering 15-20 (Springer)
[3] Teruo, Mori (2008) "Survey for Optimum the difference prediction and actual value" (Taguchi is OK??) No113 Proceeding $16^{\text {th }}$ Quality Engineering Association.
[4] Jeff: Sober Ghosh (1990): [Statistical Design and Analysis of industrial Experiment Marcel Dekker, NC (USA)
[5]Teruo MORI,Izuru Sadamatsu,Akira
Tomishima, Shun Matsuura (2018)
"Comparison of the behaviors and difference of the optimum between compound and orthogonal arrays 48(1),pp105-111.
[6]Teruo MORI (2018) " Survey and analysis for Reverse data to compound noise factors" No2-1 117 th JSQC Nagoya
[7]Leon, Shoemaker, Kacker (1987) "Performance Independent of Adjustment: An explanation and Extension of Taguchi's Signal-to-Noise Ratio. Technimetrics Aug p253-285
[8] X. Shirley Hou (2002) "On the use of compound noise factor in parameter design experiment" Appl. Stochstic Models Bus. Ind 18. 225-243
[9]Shun Matsuura(2014) "Precision of the Estimation of the Response Mean and the Response variance in Compound Noise Experiments', Japanese society for Quality control 44 (19, pp123-134)
[10] Data base (Excel) for $62 \%$ problems. http://www02. jet. ne. jp/ ${ }^{\sim}$ i-sada/sub04. htm
[Memo] Taguchi Genichi described on his biography received Ph.D. at Kyusyu University (1962). However, there is no his name on Ph.D. list of Kyusyu University. So, we have used the prof as an honorific title for him.
https://catalog.lib.kyushu-u.ac.jp/opac_search/?lang=0 \&appname=Netscape\&version=5\&sort_exp=6\&disp $\exp =20 \&$ amode $=2 \& \mathrm{cmode}=0 \&$ schemaid $=823 \& b r w f 1$ $\mathrm{g}=1 \& \mathrm{flflg}=\& \mathrm{smode}=0 \& k y w d=\% \mathrm{E} 7 \% 94 \% \mathrm{~B} 0 \% \mathrm{E} 5 \% 8$ F\%A3

